Thermal Infrared Image Processing to Assess Heat Generated by Magnetic Nanoparticles for Hyperthermia Applications

نویسندگان

  • Raquel O. Rodrigues
  • Helder T. Gomes
  • Rui Lima
  • Adrián M. T. Silva
  • Pedro J. S. Rodrigues
  • Pedro B. Tavares
  • João Manuel R. S. Tavares
چکیده

Magnetic fluid hyperthermia (MFH) is considered a promising therapeutic technique for the treatment of cancer cells, in which magnetic nanoparticles (MNPs) with superparamagnetic behavior generate mild-temperatures under an AC magnetic field to selectively destroy the abnormal cancer cells, in detriment of the healthy ones. However, the poor heating efficiency of most NMPs and the imprecise experimental determination of the temperature field during the treatment, are two of the majors drawbacks for its clinical advance. Thus, in this work, different MNPs were developed and tested under an AC magnetic field (~1.10 kA/m and 200 kHz), and the heat generated by them was assessed by an infrared camera. The resulting thermal images were processed in MATLAB after the thermographic calibration of the infrared camera. The results show the potential to use this thermal technique for the improvement and advance of MFH as a clinical therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study

In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...

متن کامل

A Simple Thermal Decomposition Method for Synthesis of Co0.6Zn0.4Fe2O4 Magnetic Nanoparticles

Magnetic nanoparticles attracted a great deal of attention in the medical applications due to their unique properties. The most exceptional property of magnetic particles is their response to a magnetic force, and this property has been utilized in applications such as drug targeting, bioseparation, contrast agents in magnetic resonance imaging (MRI) and heating mediators for cancer therapy. In...

متن کامل

Simulation of tissue heating by magnetic fluid hyperthermia

Objective: Magnetic fluid hyperthermia is a technique in which thermal energy is generated by magnetic nanoparticles (MNPs) that are excited by an alternating magnetic field (AC field). During hyperthermia, in-vivo monitoring of elevation of temperature relies on invasive insertion of conventional thermometers, or employment of thermo-sensitive cameras that lack high precision....

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications

Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015